{ "cells": [ { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ... 0.115 0.116 0.117 \\\n", "0 0 0 1 0 0 0 0 0 0 0 ... 0 0 0 \n", "1 0 1 0 1 0 0 0 1 0 0 ... 0 0 0 \n", "2 0 0 1 0 1 0 0 0 0 0 ... 0 0 0 \n", "3 0 0 0 1 0 1 0 0 0 0 ... 0 0 0 \n", "4 0 0 0 0 1 0 1 0 0 0 ... 0 0 0 \n", ".. .. ... ... ... ... ... ... ... ... ... ... ... ... ... \n", "119 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", "120 0 0 0 0 0 0 0 0 0 0 ... 0 0 1 \n", "121 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", "122 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", "123 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", "\n", " 0.118 0.119 0.120 0.121 0.122 0.123 0.124 \n", "0 0 0 0 0 0 0 0 \n", "1 0 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 0 0 \n", ".. ... ... ... ... ... ... ... \n", "119 0 0 0 0 0 0 0 \n", "120 0 0 0 0 0 0 0 \n", "121 0 0 0 0 0 0 0 \n", "122 0 0 0 0 0 0 0 \n", "123 0 0 0 0 0 0 0 \n", "\n", "[124 rows x 125 columns]\n" ] } ], "source": [ "import pandas as pd\n", "\n", "df = pd.read_excel (r'C:\\Users\\vicen\\Desktop\\UDEM\\PEF\\Matrices\\Bij_Centralizado.xlsx')\n", "print (df)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
00.10.20.30.40.50.60.70.80.9...0.1150.1160.1170.1180.1190.1200.1210.1220.1230.124
0001000000000...0000000000
10100010000010000...0000000000
200100010000000...0000000000
300010001000000...0000000000
400001000100000...0000000000
..................................................................
1190000000000...0000000000
1200000000000...001000000000
1210000000000...0000000000
1220000000000...0000000000
1230000000000...0000000000
\n", "

124 rows × 125 columns

\n", "
" ], "text/plain": [ " 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ... 0.115 0.116 0.117 \\\n", "0 0 0 100 0 0 0 0 0 0 0 ... 0 0 0 \n", "1 0 100 0 100 0 0 0 100 0 0 ... 0 0 0 \n", "2 0 0 100 0 100 0 0 0 0 0 ... 0 0 0 \n", "3 0 0 0 100 0 100 0 0 0 0 ... 0 0 0 \n", "4 0 0 0 0 100 0 100 0 0 0 ... 0 0 0 \n", ".. .. ... ... ... ... ... ... ... ... ... ... ... ... ... \n", "119 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", "120 0 0 0 0 0 0 0 0 0 0 ... 0 0 100 \n", "121 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", "122 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", "123 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", "\n", " 0.118 0.119 0.120 0.121 0.122 0.123 0.124 \n", "0 0 0 0 0 0 0 0 \n", "1 0 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 0 0 \n", ".. ... ... ... ... ... ... ... \n", "119 0 0 0 0 0 0 0 \n", "120 0 0 0 0 0 0 0 \n", "121 0 0 0 0 0 0 0 \n", "122 0 0 0 0 0 0 0 \n", "123 0 0 0 0 0 0 0 \n", "\n", "[124 rows x 125 columns]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Cij=100*df\n", "Cij" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "ename": "SyntaxError", "evalue": "invalid syntax (, line 1)", "output_type": "error", "traceback": [ "\u001b[1;36m File \u001b[1;32m\"\"\u001b[1;36m, line \u001b[1;32m1\u001b[0m\n\u001b[1;33m CV = [2; 3; 4]\u001b[0m\n\u001b[1;37m ^\u001b[0m\n\u001b[1;31mSyntaxError\u001b[0m\u001b[1;31m:\u001b[0m invalid syntax\n" ] } ], "source": [ "CV = [2; 3; 4]\n", "Cij= CV * df\n", "Cij" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "d = np.arange(10)\n", "d" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90])" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "c=d*10\n", "c" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0 1 2 3 4 5 6 7 8 9]\n" ] } ], "source": [ "print(d)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2 2 2 2 2 1 2 2 1 1 1 1 2 1 1 2 2 2 1 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 1\n", " 1 2 1 1 2 2 1 2 1 1 2 1 1 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 1 1 1 2 2\n", " 2 2 1 2 2 1 1 1 1 2 1 1 2 2 1 2 1 2 2 1 2 2 1 1 1 1 2 1 2 1 1 1 1 2 2 2 1\n", " 1 2 2 2 2 2 2 2 2 1 2 1 1 1]\n" ] } ], "source": [ "n = np.random.randint(1,3,125)\n", "print(n)" ] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[array([[1, 2, 3],\n", " [4, 5, 6]]), array([[ 2, 4, 6],\n", " [ 8, 10, 12]])]\n" ] } ], "source": [ "a = [[1,2,3],\n", " [4,5,6]]\n", "cv =[1,2,3]\n", "cij=[]\n", "for i in range(0, 2):\n", " ci = np.dot(a,cv[i])\n", " cij.append(ci)\n", "\n", "print(cij)" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 2, 4, 6],\n", " [ 8, 10, 12]])" ] }, "execution_count": 58, "metadata": {}, "output_type": "execute_result" } ], "source": [ "di=[]\n", "for i in range(0, 125):\n", " ci = np.dot(a,cv[i])\n", " cij.append(ci)\n", "\n", "print(cij)" ] }, { "cell_type": "code", "execution_count": 101, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "int" ] }, "execution_count": 101, "metadata": {}, "output_type": "execute_result" } ], "source": [ "d_i = [4,0,2,1,5,3,6,0,1,0,0,0]\n", "Vc = []\n", "for i,d in enumerate(d_i):\n", " if d>0:\n", " Vc.append(i)\n", "type(d)" ] }, { "cell_type": "code", "execution_count": 84, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "pandas.core.frame.DataFrame" ] }, "execution_count": 84, "metadata": {}, "output_type": "execute_result" } ], "source": [ "r_kij = pd.read_excel (r'C:\\Users\\vicen\\Desktop\\UDEM\\PEF\\Matrices\\R-kij.xlsx')\n", "type(r_kij)" ] }, { "cell_type": "code", "execution_count": 97, "metadata": {}, "outputs": [ { "ename": "SyntaxError", "evalue": "invalid syntax (, line 4)", "output_type": "error", "traceback": [ "\u001b[1;36m File \u001b[1;32m\"\"\u001b[1;36m, line \u001b[1;32m4\u001b[0m\n\u001b[1;33m for i in range(len(speeds))\u001b[0m\n\u001b[1;37m ^\u001b[0m\n\u001b[1;31mSyntaxError\u001b[0m\u001b[1;31m:\u001b[0m invalid syntax\n" ] } ], "source": [ "k = [5,5,5,5,5,4]\n", "speeds = [15,20,25]\n", "\n", "for i in range(len(speeds))\n", " sk = speeds[i] * k\n", "sk[1]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 4 }