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Structured Abstract 

 

• Purpose – The objective of this papers is to assess and synthesize the published literature related 

with the application of data analytics, big data, data mining and machine learning into healthcare 

engineering systems. 

• Design/methodology/approach – A systematic literature review (SLR) was conducted to obtain 

the most relevant papers related with the research study from three different platforms: 

EBSCOhost, ProQuest and Scopus. The literature was assessed and synthesized based on an 

analysis of characteristics related with the publications, their authors and their content. 

• Findings – From the SLR, 576 publications were identified and analyzed. The research area seems 

to show characteristics of a growing field with new research areas evolving and applications being 

explored. In addition, the main authors and collaboration groups publishing in this research area 

were identified throughout a social network analysis; this could lead new and current authors 

identify researchers with common interests on the field. 

• Research limitations/implications – The use of the SLR methodology does not guarantee that all 

relevant publications related with the research are will be covered and analyzed; however, the 

platforms were selected based on the authors’ previous knowledge about the nature of the 

publications that could be found on each of them. 

• Originality/value – To the best of the authors’ knowledge, this paper represents the most 

comprehensive study regarding the authors who have publications of the field of data analytics, big 

data, data mining and machine learning applied into healthcare engineering systems. 

• Keywords: data analytics, big data, machine learning, healthcare systems, systematic literature 

review 

• Article classification: Literature review 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

 

Data science is a “set of fundamental principles that support and guide the principled extraction of 

information and knowledge from data” (Foster and Tom, 2013). It involves the use and development of 

algorithms, processes, methodologies and techniques for understanding past, present and future phenomena 

through the analysis of data with the goal of improving decision making. Data scientists and data analytics 

must be able to view business problems from a data perspective to be able to leverage the benefits of its 

application on the organization. The healthcare industry is one of the world’s largest, most critical and 

fastest-growing industries that is evolving through significant challenges in recent times (Raghunath et al., 

2013). It is considered as a data-driven industry and has historically generated large amount of data, driven 

by record keeping, compliance and regulatory requirements, and patient care (Wullianallur and Viju, 2014). 

However, the healthcare industry is also considered as a highly inefficient industry where one-third of its 

expenditures are wasted and do not contribute to better quality outcomes, according to a report from the 

Institute of Medicine. While the healthcare system continues to apply industrial and systems engineering 

tools with the aim of achieving an effective coordinated system, data analytics have the potential to improve 

care, save lives and lower costs by identifying associations and understanding trending and patterns within 

the data, which can lead to safer, faster, higher quality outcomes and more efficient medical practices. 

 

Data science has several areas and disciplines within itself, thus there is no universal agreement in literature 

regarding its components and interactions. Dahl Winters (2015) developed a Venn diagram to visualize the 

three main fields of data science (i.e. data analytics, big data, methods and algorithms) and their 

intersections (i.e. data mining, machine learning, software tools, big data analytics) based on a two-axis 

diagram (i.e. on the x axis: experimental versus theoretical; on the y axis: descriptive versus prescriptive). 

On the other hand, Frank et al., (2016), developed a schematic visualization (i.e. Efron-triangle) of the main 

fields constituting data science (i.e. domain knowledge, statistics/mathematics, computer science) and their 

intersections (i.e. machine learning, biostatistics, data engineering), based on the original data science Veen 

diagram created by Drew Conway (Conway, 2013). Taking into consideration the significant role data 

science can take to achieve better outcomes in healthcare systems, it would be relevant to understand to 

what extent each field/area has been applied, and its maturity state, in healthcare systems, along with the 

authors researching that field/area. Therefore, the aim of this paper is to assess and synthesize the published 

literature related with the impact, benefits, implications, challenges, opportunities or trends of data science 

exclusively in healthcare systems. 

 

In order to achieve this aim, the authors used a SLR as the research methodology. SLRs aim to address the 

published literature of a specific research field by identifying, evaluating and integrating the findings of all 

relevant studies that address a set of research questions while being objective, systematic, transparent and 

replicable. However, in order for highly relevant publications to be identifiable, they must be indexed in 

targeted platforms/databases (Lefebvre et al., 2011). To ensure this, the authors have strategically selected 

platforms that contained medical databases to ensure adequate coverage of the research area and designed 

a search strategy that allowed the capture of as many significant publications as possible. 

 

After the final set of publication was obtained for this study, three different dimensions were assessed and 

evaluated to synthesize information: publication characteristics, authors characteristics and content 

characteristics. These were identified based on preliminary work defining relevant criteria to evaluate the 



maturity of a research area (Heather et al., 2013). The publication characteristics analyses included an 

examination on the publication trends over time as well as the characteristics of the publications’ sources 

associated with the final paper set, which in this case were primarily academic journals, given the nature of 

the publication set. The authors characteristics examination included an investigation of past and new 

authors quantity and patterns of collaborations between them through social network analyses. Investigation 

of content characteristics, for this work’s purpose, refers to analyze the scope in which the areas/fields 

within data science (e.g. data analytics, machine learning, data mining) have been addressed in healthcare 

systems, in which medical departments and to treat which diseases/disorders. Thus, the research questions 

addressed for this study are: 

  

RQ1. Publications characteristics: 

 

a. Which trend exist in publication pattern over time for this research area? 

b. What type of sources are publishing the works? 

c. Which are the sources with the highest frequency of published works on the field? 

d. Which are the main study fields from the sources publishing the works? 

 

RQ2. Authors characteristics: 

 

a. How many authors are contributing to this area? To what extent are new authors contributing? 

b. To what extent authors are collaborating between them in this research area? 

c. How is the distribution of number of authors per publication? 

 

RQ3. Content characteristics:  

 

a. Which are the most frequently mentioned data science fields applied into healthcare systems? 

b. Which are the top medical departments where data science is being studied and applied? 

c. Which are the top diseases/disorders being addressed through data science approaches? 

d. Which are the main study approaches on the theoretical publications set? 

e. Which are the main application objectives on the case study publications set? 

f. Which are the new emerging research lines related with this research area? 

 

This paper is divided into three main section: research methodology (i.e. SLR conduction), results 

(publication characteristics, authors characteristics and content characteristics) and conclusions and future 

research. 

 

 

 

 

 

 

 

 

 



Literature Review 

 

In order to determine to what extent the literature related with data science applied into healthcare systems 

has been analyzed, a comparison study of previous literature systematic reviews was conducted. Table I 

shows the results of such study, sorted by publication year. The literature review conducted in 2015 aimed 

to discuss the perspectives of the evolving use of big data in science and healthcare, and to examine some 

of the opportunities and challenges. The literature review conducted in 2015 discussed big data applications 

in four majors biomedical subdisciplines: bioinformatics, clinical informatics, imaging informatics and  

public health informatics. The  literature review conducted in 2017 reviewed big data sources and 

techniques in the health sector and identified which of these techniques are the most used in the prediction 

of chronic diseases. Once again, the first literature review conducted in 2018 reviewed big data analytics 

applications and challenges in its adoptions in healthcare, and identified strategies to overcome them. The 

second literature review conducted in 2018-and the most extensive one-provided a systematic review of the 

development of the fields of multiple healthcare sub-areas, data mining techniques, types of analytics, data 

and data sources, as well as possible directions. Finally, the last literature review conducted in 2018 assessed 

and synthesized how the big data phenomenon has contributed to better outcomes for the delivery of 

healthcare services. 

 

One interesting finding from these systematic literature reviews is the fact that none of them conducted 

social network analyses related with authors publishing in this research field, which represented a gap 

within this field to be covered. This study, in addition of being the most updated one, analyzed a 

significantly higher number of publications in comparison with the others, included a theoretical approach 

study as well as a social network of the authors publishing in the research field aiming to help new and 

current researches identify researchers who have similar interests and research lines within this field and 

that are collaborating in study groups for the diffusion of knowledge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Category 

Big Data in 

Science and 

Healthcare: 

A Review of 

Recent 

Literature 

and 

Perspectives 

Big Data 

Application 

in 

Biomedical 

Research 

and  Health 

Care: A 

Literature 

Review 

A 

Systematic 

Review of 

Techniques 

and 

Sources of 

Big Data in 

the 

Healthcare 

Sector 

Concurren

ce of big 

data 

analytics 

and 

healthcare: 

A 

systematic 

review  

A 

Systematic 

Review on 

Healthcare 

Analytics: 

Application 

and 

Theoretical 

Perspective 

of Data 

Mining 

Data mining 

and 

predictive 

analytics 

applications 

for the 

delivery of 

healthcare 

services: a 

systematic 

literature 

review 

This 

paper 

Year 2014 2015 2017 2018 2018 2018 2019 

Papers analyzed 0 68 32 58 117 22 576 

Sources of big 

data 
No No Yes Yes No No No 

Sources of 

healthcare data 
No No No Yes No No No 

Big data 

analytical 

techniques 

No No Yes Yes Yes No Yes 

Application 

areas of big 

data/data 

mining 

Yes Yes No Yes Yes Yes Yes 

Platforms of big 

data 
No No Yes No No No No 

Big data 

definitions 
No No No Yes No No No 

Keywords 

network 
No No No No Yes No Yes 

Distribution of 

publications 
No No No No Yes Yes Yes 

Distribution of 

journals 
No No No No Yes Yes Yes 

Types of 

analytics 
No No No No Yes No Yes 

Classification 

by disease 
No No No No Yes No Yes 

Data mining 

algorithm 

tool/software 

No No No No No Yes No 

Authors’ 

network 
No No No No No No Yes 

Theoretical 

approach 
No No No No No No Yes 

 

Table I. Systematic literature reviews (SLR) comparison table 



Research methodology 

 

The systematic literature review approach used throughout this bibliometric analysis was the one proposed 

by Heather et al., (2016), adapted from David et al., (2003) and the approach presented in the Cochrane 

Handbook (Julian and Sally 2011; David et al., 2003), composed of seven steps: 

 

1. Problem definition: the research team identifies the research area and defines the research 

objectives. 

2. Scoping study: the research team identifies the desired study scope and conducts a ‘traditional’ 

literature review to find relevant publications related with the research area. 

3. Search strategy: the research team evaluates the scoping set of papers by identifying potential 

search terms. Then they define the strategy by defining the databases/platforms to be searched, 

Boolean phrases, search tools, limiters and filters and exclusion criteria.   

4. Exclusion criteria: the research team excludes those publications not directly related with analytics, 

data mining, big data and machine learning applied in healthcare engineering systems. 

5. Data collection: the research team collects bibliometric data and criteria identified based on the 

aim of the research study. 

6. Data analysis: the research team conducts the bibliometric analysis based on the aim of the research 

study. 

7. Reporting: presentation of findings and results. 

 

Problem definition 

 

Throughout the literature, there are multiple publications regarding the use of data science, data analytics 

and machine learning algorithms applied into healthcare systems; however, it is not clear to what extent 

authors contributing to this research area are collaborating with each other to diffuse new knowledge and 

significant findings. For this reason, an SLR aiming to synthesize the current published literature can benefit 

to guide future development and evolution of this research area. 

 

Scoping study 

 

The scoping study was conducted through two activities. First, an initial list of search terms was set based 

on the authors’ previous knowledge about the research area. Second, the research team identified six main 

publications related with the research area using three platforms (EBSCOhost, ProQuest and Scopus): 

Malik et al. (2018), Saiful et al. (2018), Hansen et al. (2014), Jake et al. (2016), Susel et al. (2017) and 

Nishita and Anil (2018), from which new search terms were added to the initial list. These six publications 

represented the scoping set of papers and were then used to create the search strategy. 

 

Search strategy 

 

The initial search strategy protocol consisted of 5 single search terms (data analytics, big data, data mining, 

machine learning and healthcare), three platforms (EBSCOhost, ProQuest and Scopus), utilization of 

Boolean operators (AND/OR), all fields search and two main exclusion criteria–published in academic 

journals and written in English language. This search strategy was tested and modified multiple times to 



identify a final set of relevant publications for this research area. First, to increase the sensitivity of the 

search, synonyms (e.g. data analysis, analysis of data, mass data, massive data), techniques (e.g. data 

processing, text mining, deep learning), more specific concepts (e.g. artificial intelligence, business 

intelligence, internet of things) and the term “health care” (due to the lack of standardization between 

healthcare and health care in publications and academic texts) were added into the original search terms 

using the OR Boolean operator. Second, also to increase sensitivity, the Boolean phrase would be applied 

for abstracts instead of all field or all text, which helped control the scope. Lastly, conference materials 

were considered in the publications’ search. Table II shows the final search strategy protocol used in this 

work. The search strategy was executed to identify all relevant papers up through July 2019. 

 

Apply exclusion criteria 

 

A total of 8,529 publications were identified and screened based on the exclusion criteria listed in Table I. 

First, duplicated publications (1,395 or 13.36% of the raw results) were removed. Second, publications that 

were not related with data science fields (2512 or 29.45%) were excluded. Third, publications that did not 

address data science fields applied exclusively to healthcare systems 4,006 or 46.96%) were excluded (e.g. 

paper that mentioned healthcare systems or used as an application example, but whose research was not 

focused on them, were excluded). It is relevant to mention that the search terms within the data science filed 

appeared on multiple papers related with “smart cities”, another popular application field for data analytics. 

Finally, publications without an electronic file (38 or 0.44%) were excluded. 

 

A total of 576 publications, representing 6.76 per cent of the raw results, was accepted as the final 

publication set for this research. For purposes of this research, these 576 publications were then classified 

into two separate sets based on their research approach: a theoretical publications set (consisting of 105 

publications) and an applications publication set (consisting of 471 publications). The theoretical 

publications set included publications who mainly focused on studying and analyzing the strengths, 

weaknesses, opportunities, threats, challenges, capabilities, trends, benefits and promises of data science, 

data analytics and machine learning algorithms applied into healthcare systems as a whole. On the other 

hand, the applications publication set included publications related with case studies of data science, data 

analytics and machine learning algorithms applied into healthcare systems that addressed a specific 

problem, disease, medical condition or medical disorder. 

 

To investigate the extent to which this research area is expanding, synthesizing and assessing the literature  

in the three dimensions outlined earlier (publications characteristics, authors characteristics and content 

characteristics) becomes a significant task. Each of these includes the analysis of one or more criteria, as 

reported in the following section. 

 

 

 

 

 

 

 

 



Components of search Explanation 

Data science concept: Search terms: 

Data analytics (8 search terms): analytics, data 

analytics, data analysis, analysis of data, 

informatic, informatics, health information 

technology, health information technologies 

Big data (6 search terms): big data, massive data, 

mass data, large data, macro data, metadata 

Data mining (3 search terms): data mining, data 

processing, text mining 

Machine learning (8 search terms): machine 

learning, artificial intelligence, robotics, deep 

learning, neural networks, internet of things, IoT, 

business intelligence 

Healthcare concept: Healthcare (2 search terms): healthcare,  

health care 

Platforms: EBSCOhost, ProQuest and Scopus 

Search strategy:  Boolean operators OR within search terms for 

each concept (i.e. analytics OR analysis of data) 

AND across concepts (i.e. analytics AND 

healthcare) 

Search field: Abstract (EBSCOhost, ProQuest and 

Scopus) 

Publications present in academic journals or 

conference materials 

Publications written in a language other than 

English 

Exclusion criteria: Exclude: 

Duplicate publications 

Publications not related with the topic or that did 

not address data science fields exclusively on 

healthcare engineering systems 

Publications for which an electronic file is not 

available 

 

Table II. Systematic literature review search protocol utilized 

 

 

 

 

 

 

 



Results 

 

To obtain a comprehensive perspective of the published literature of data science, data analytics and 

machine learning applied into healthcare engineering systems, this section presents results of analyses 

conducted to address the research questions posed earlier. 

 

Publications characteristics 

 

a. Publications trend 

 

 
 

Figure 1. Frequency of publications per year 

 

Trends analyses are useful for visualizing trends in the frequency of publications over time to determine 

the extent to which the frequency is changing. When conducting a SLR, publication rate is one of the 

multiple analyses often used to evaluate publication trends. Figure 1 consists in a chart corresponding to 

the frequency of publications per year; the following findings can be observed from it. The first paper 

focusing on data science, data analytics and machine learning applied into healthcare engineering systems 

was published in 2004 – thus, this particular research area spans only 15 years and appears to be relatively 

young. Second, from 2004 to 2010 the number of publications fluctuated between zero and three and does 

not seem to demonstrate an increasing trend. Third, as suggested by the cumulative frequency line, the 

publication trend started to increase after the year 2011, being 2016 the year with the highest number of 

publications (195 papers), up to date. For purposes of this analysis and considering that the publication set 

included papers published until end of June 2019, the last column corresponding to the frequency of 

published papers in 2019 was doubled to keep consistency within the data. 
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b. Publications’ outlet type 

 

Source type consists of analyzing the type of outlets that are publishing the work in this research area. From 

the publications0 outlet type analyses conducted, it is interesting to highlight the fact that 410 (or 71.18 per 

cent) of the papers were published in academic journals, 95 (or 16.49 per cent) in conference proceedings, 

35 (or 6.07 percent) in reviews and 25 (or 4.34 per cent) in features. The rest were published in comparative 

studies, editorials, news or notes, respectively.  

 

c. Top publications sources 

 

A total of 346 publication outlets were identified from the set of 576 publications. From those outlets, the 

most frequently used were academic journals such as the Journal of Medical Systems (33), PLoS One (32), 

BMC Medical Informatics and Decision Making (13), International Journal of Advanced Research in 

Computer Science (12), BMC Bioinformatics (11), Journal of Big Data (11), Computers in Biology and 

Medicine (10) and Journal of Medical Internet Research (10). On the other hand, the conference 

proceedings authors most frequently published in were the 18th IEEE International Conference on e-Health 

Networking, Application and Services, IEEE 1st International Conference on Connected Health: 

Applications, Systems and Engineering Technologies, 2016 IEEE International Conference on Healthcare 

Informatics, 2016 IEEE International Conference on Mobile Services and 2016 6th International 

Conference - Cloud System and Big Data Engineering, all with two publications each, respectively. 

 

d. Publications outlets’ study fields 

 

In addition, an analysis was conducted to identify the publications outlets’ main study fields, according to 

SJR – Scimago Journal and Country Rank, in order to determine to which research field this topic would 

fit better. According to the results of the analysis, the publication outlets’ main study fields were medicine 

(138), health informatics (101), information systems (82), computer science applications (67), computer 

networks and communications (61), biochemistry, genetics and molecular biology (55), health information 

management (48), electrical and electronic engineering (43), agricultural and biological sciences (37) and 

hardware and architecture (34). One interesting finding is the fact that most of the publication outlets’ study 

fields could be associated in three main fields: health, computer science and information systems. Finally, 

an analysis of the journals’ impact factor quartiles was conducted to identify their ranks on their respective 

categories. The analysis results showed that 42% where in Q1, 39% in Q2, 15% in Q3 and 4% in Q4, which 

suggests that most of the journals where the authors are publishing their works are highly ranked on their 

respective study field.  

 

 

 

 

 

 

 

 

 



Authors characteristics 

 

a. New authors’ contribution 

 

 
 

Figure 2. New authors per year 

 

An analysis of the frequency of new authors publishing in this research area was conducted, as shown in 

Figure 2. The graph suggests an increasing trend on the number of new authors publishing in this research 

area, being the year 2016 the one with the highest introduction of new authors; further, the cumulative 

frequency seems to support the ability of this research area to attract new authors. For purposes of this 

analysis and considering that the publication set included papers published until end of June 2019, the last 

column corresponding to the frequency of new authors in 2019 was doubled to keep consistency within the 

data. 

  

One of the characteristics of diversity of authors that is commonly investigated is the authors’ affiliation 

country; this analysis allows determining to what extent author interest is concentrated primarily in a 

geographical region or dispersed around the world. The 2402 unique authors on both publication sets 

represent a total of 51 different countries. The countries with the highest number of authors were the USA 

(34.6 per cent), China (15.2 per cent), India (7.5 per cent), United Kingdom (6.3 per cent) and Australia 

(5.8 per cent). Other countries represented South Korea, Canada, Germany, Italy and Spain with less than 

4 per cent each. Therefore, this research area, while attracting interest from authors around the world 

representing all continents, is concentrated primarily in five countries accounting for most of the authors 

(69.4 per cent).   
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b. Authors collaborations 

 

 

 
 

Figure 3. Co-author network for both publications sets 

 

Collaboration between authors was analyzed using a social network created in Gephi to visualize direct and 

indirect interactions between authors and study groups; the Fruchterman Reingold clustering algorithm was 

applied since it was the one that allowed the best visualization. On Figure 3, the authors’ names were color-

coded: authors with a blue font appeared exclusively on the theoretical publications set, authors with a black 

font appeared exclusively on the case study publications set and authors with a red font appeared on both 

sets. For this figure, the size of the nodes represented the number of publications per author while the width 



of the connecting line between nodes represented the total number of publications between two given 

authors. The authors with the highest number of publications were I. Dinov, Francisco Florez-Revuelta, 

Nuno Garcia, Ivan Pires, Nuno Pombo and S. Spisante, with four publications each, respectively. The large 

number of authors that have published more than a single paper suggests that this research area represents 

the main research focus for multiple authors. In the same way, Figure 3 illustrates the formation of multiple 

study groups, which confirms that diffusion of knowledge is occurring through collaboration. 

 

c. Distribution of number of authors per publication 

 

A study of the distribution of number of authors per publication was performed to get an insight about the 

way in which this research field is being studied (i.e. individually or in groups). Out of the 576 results, only 

53 of them (or 9.20% of the analyzed publications) were written by a single author, while the other 523 

publications were written in groups between 2 and 22 authors, being the group of 3 authors the one with 

the highest frequency with 117 publications (or 20.31% of the analyzed publications).With this analysis, it 

can be inferred that it is most likely for authors to study this research field in groups rather than individually, 

which strengthens the fact that diffusion of knowledge is occurring through collaboration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Content characteristics 

 

a. Data science fields applied into healthcare systems 

 

 
 

Figure 4. Keywords count network – application papers 

 

In order to identify and analyze the top data science fields and machine learning algorithms applied into 

healthcare systems, as well as their concurrence relationship, a social network with the keywords from both 

publication sets was created using Gephi. The Fruchterman Reingold clustering algorithm was applied since 

it was the one that allowed the best visualization. Similarly, the size of the nodes represented the keyword’s 

count frequency while the width of the connecting lines between nodes represented the total number of 

times their appeared together in a publication. The top five data science fields applied into healthcare 

systems were big data, machine learning, data mining, decision support systems and Internet of Things. On 

the other hand, the top machine learning and learning algorithms applied were cloud computing, decision 



tree, neural networks, Naïve Bayes classifier, support vector machines and association rule. On interesting 

finding is the fact that the top machine learning algorithms applied into healthcare systems are classification 

and clustering algorithms, which suggests an idea of the purposes behind their applications.  

 

b. Top medical departments where data science is being studied and applied 

 

Identifying the top medical departments where data science and machine learning algorithms have been 

applied allows making inferences about the application fields’ sizes, and thus, the degree to which they 

have been explored. According to an analysis conducted on this study, ontology, mental health, health 

services, elderly healthcare, epidemiology, omics, behavioral health, drug development, genomics and 

intensive care units turned to be the most popular medical departments where data science and machine 

learning algorithms have been applied (in descending order), opening road for further research in other 

medical departments. 

 

c. Top diseases being addressed through data science approaches 

 

Similarly, an analysis of the top diseases being addressed through data science and machine learning 

algorithms was conducted. One interesting finding is the fact that most of the diseases approached can be 

classified into three main groups: cancer (e.g. breast cancer), heart diseases (e.g. cardiovascular disease and 

strokes) and diabetes (e.g. diabetes type 2), which are all top leading causes of Americans’ deaths and 

disabilities and leading drivers of the United States’ $3.5 trillion in annual healthcare costs according to the 

National Center for Chronic Disease Prevention and Health Promotion (2019). Other diseases and medical 

disorders frequently studied and addressed through data science and machine learning algorithms were 

HIV, asthma and depression, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



d. Study approach on theoretical publications set 

 

Research area Studies/analyses performed Publication reference1 

Big Data 

Diverse uses and applications 

2  3  5  7  9  18  22  25  26  28  31  32  33  35  36  

40  41  42  43  44  45  46  47  48  49  54  55  56  

61  62  72  85  86  95  107  108 

Implementation challenges/barriers/limitations 
2  8  9  24  26  27  32  33  34  35  36  38  49  51  

52  54  56  57  58  62  63  67  85  94  99 

Strengths, weaknesses, opportunities and/or threats 37  51  52  58  61  62  63  67  70  85  94  96  107 

Implementation advantages/benefits/promises 2  24  32  54  55  57  86  96  112 

Techniques 10  27  39  46  49  70  94 

Capabilities 13  27  31  45  70  78 

Systematic literature review 1  48  50  51  91 

Sources 10  33  70 

Characteristics 66  70 

Proposed model/framework 13 

Trends/future directions 108 

Others 79 

Data Mining 

Diverse uses and applications 11  15  17  19  75  76  77  89  101  103  109 

Techniques 76  77  89 

Strengths, weaknesses, opportunities and/or threats 102  111 

Systematic literature review 74  76  106 

Algorithms 75 

Characteristics 89 

Implementation advantages/benefits/promises 89 

Healthcare Analytics 

Diverse uses and applications 4  11  16  97 

Implementation challenges 4,97 

Perspectives 97 

Guidelines 97 

Internet of Things 

Diverse uses and applications 90 

Architecture, algorithms and applications 87 

Opportunities 90 

Systematic literature review 110 

Implementation challenges/barriers/limitations 90 

Machine Learning 

Diverse uses and applications 18  19  21  27  31  38  78  104 

Advantages and disadvantages 48 

Implementation challenges/barriers/limitations 93 

Clinical Decision Support 

Systems 

Architecture, algorithms and applications 69 

Implementation challenges/barriers/limitations 93 

Systematic/literature review 68 

Medical Information 

Technologies 

Architecture, algorithms and applications 83 

Trends/future directions 82 

E-health 
Diverse uses and applications 45  47  60  82 

Proposed model/framework 12  47  60  82 

Others Miscellaneous 6  23  71  80  81  88  92  98  100  115  116 

 

Table III. Study approach of theoretical publications per paper 

 

 

 

 
1 Refer to Appendix 1 for references. 



e. Application objectives on case study publications set 

 

Application objective Publication reference2 

Prediction 

1  2  6  7  9  12  14  25  27  35  46  51  52  78  81  92  105  111  112  120  121  126  138  144  145 160  121  174  

178  189  191  194  201  205  251  262  265  266  276  282  288  291  304  306  328 330  331  332  336  341  353  

356  359  375  384  390  391  392  393  394  395  396  397  398  399 400  401  402  403  404  405  407  408  409  

410  411  412  413  414  415  416  417  418  427  429 436  438  439  444  449  474  480  481  485  489  490  496  

497 

Classification 
21  22  25  36  39  40  80  93  117  184  245  250  267  307  325  326  342  354  358  362  367  371 373  380  382  

451  452  478  495 

Decision making 28  101  142  169  179  202  230  231  232  233  268  286  339  364  368  374  383  424  453  471 498 

Data mining 15  17  103  216  218  219  220  345  346  347  350  351  370  386  422  423  487  494 

Identification 16  90  129  182  214  252  274  298  299  300  301  302  310  333  463  502 

Research 68  102  109  124  125  154  243  385  308  311  313  323  349  428  434  458 

Diagnosis 10  53  72  88  91  95  115  130  188  261  295  296  297  317  318   

Detection 19  29  31  41  55  140  143  211  226  239  275  466  479  483 

Case study 77  152  165  209  235  263  271  337  343  430  435  468 

Data analysis 106  247  281  289  419  454  456  464  469  500 

Framework 42  49  175  176  180  208  237  287  293  340 

Monitoring 26  44  56  79  97  99  100  278  294  431 

Discovery 54  85  161  210  248  433  475  484 

Data managing 18  57  64  213  221   240 437 

Modeling 4  13  149  222  255  338 

Pattern analysis 66  164  167  348  378  379 

Association 118  139  196  322  387 

Clustering 60  193  246  303  315 

Data processing 3  69  98  357  440 

Data visualization 91  224  229  361  388 

Systematic review 73  74  75  123  447 

Extraction 20  32  170  199 

Forecasting 107  236  273  491 

Comparative study 186  200  366 

Data handling 116  283  284 

Investigation 96  127  462 

Optimization 225  292  372 

Simulation 197  204  365 

Assessment 137  181 

Automation 83  141 

Case management 134  467 

Data integration 59  61 

Exploration 37  499 

Improvement 482  503 

Prioritization 146  147 

Screening 82  110 

Stratification 8  376 

Text mining 450  465 

Translation 33  473 

Miscellaneous 

5   11  24  30  34  43  46  50  62  65  67  70  71  76  84  86  89  104  108  114  119  122  128  131  132  133  135  

136  148  150  151  153  155  156  158  159  162  163  166  168  172  177  183  185 187  190  192  195  203  212  

223  234  238  242  244  249  254  256  258  259  260  269   272 277  279  280  305  309  312  314  316  319  321  

327  329  335  344  352  360  363  369  377  381 385  389  421  425  426  432  441  442  445  455  457  460  461  

470  472  488  493  501 

 

Table IV. Application objectives on the case study publications set per paper 

 
2 Refer to Appendix 2 for references. 



Two different tables where constructed to classify the publications on both sets. While Table III classified 

the publications on the theoretical set based on their research area and study/analysis performed, Table IV 

classified the publications on the case study application set based on their application objective. As 

suggested previously on Figure 4 and displayed on Table III, most of the research of the publications on 

the theoretical set focused on big data, which is highly correlated with the amount of data generated daily 

by the healthcare industry. Similarly, as suggested on Figure 4 and displayed on Table IV, the application 

purposes of machine learning algorithms were mainly for prediction (e.g. readmissions prediction, disease 

prediction, fraud prediction, adverse event prediction, medical outcomes predictions) classification (i.e. 

based on the patients’ treats and characteristics) and decision making (e.g. type of surgery, drugs and 

recovery process), outlining the significant role of predictive analytics in healthcare systems. 

 

f. New emerging research lines  

 

In order to understand the direction towards this research field is moving, a qualitative study was performed 

on the theoretical publications set to identify the new emerging research lines. These included: (1) the 

creation of algorithms and big data analytics technologies to address data privacy, data security and data 

traceability concerns; (2) improved understanding of the ethical, societal and economic implications of 

applying data analytics and machine learning algorithms in healthcare organizational decision-making; (3) 

big data and machine learning algorithms in conjunction with evidence-based medicine practices; (4) 

integration of multiple databases with different data structures; (5) big data applied into level molecular 

data (i.e. the atomic scale); (6) applications related with social media investigation; (7) addressing 

information loss in data preprocessing and cleaning steps; and (8) data analysis and automation for non-

experts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusions and future research 

 

This work contributes to the literature in three different ways: First, the authors with the highest frequencies 

of publications in this research area were identified. This information can aid other researches to connect 

with current researchers who have published works related with data science, data analytics and machine 

learning applied into healthcare engineering systems. Second, authors’ social networks (i.e. study groups) 

were identified. Similarly, this information can aid other researches to identify study groups of authors who 

may have similar research lines within this research area; which becomes significantly relevant after taking 

into consideration its quick growing and expansion between academics and professionals. Third, the 

analysis of the publications using the three dimensions that were examined here offers the opportunity to 

obtain a more complete perspective from a publication set. From the perspective of publication 

characteristics, it can be strongly stated that the field of data science, data analytics and machine learning 

applied into healthcare engineering systems has passed the introduction phase and could be considered as 

a growing field: a growing trend in the number of publications, as well as the new research areas evolving 

and applications being explored, support this premise. In the same way, evidence from analyzing author 

characteristics suggest this research field as a growing field: a growing number of new authors contributing 

to this research area, the diversity of authors’ nationalities and the formation of multiple study groups (i.e. 

research collaborations efforts between them). In the last dimension, content characteristics, the main 

medical departments and diseases/medical disorders that have been addressed through data science, data 

analytics and machine learning algorithms suggest the direction towards this research field is going and the 

new research lines that might evolve from it. Fourth, the papers on publication sets were classified based 

on their research objectives, approaches and purposes. This could aid new and current researches to identify 

publications related to a more specific field within the research area and with a particular objective. Finally, 

new research lines were identified. Future work is needed to determine to what extent these new research 

lines have been researched and why (i.e. limited technology, economic constraints, overall impact, lack of 

information). This could potentially inspire new and current researches to go more in depth into this fields 

to generate and share knowledge new knowledge to contribute to the study of this research field.  
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